

Microwave & Millimeter Wave

Noise Figure Measurement Solutions

CETC China Electronics Technology Instrument Co., Ltd

Noise Figure Test Basics

Ceyear Noise Figure Measurement Solutions

IV Ceyear Competitiveness Analysis

I. Company Profile

1. Ceyear Introduction

Headquarters	Qingdao, China
Establishment	1968 (CETC 41)
Business Focus	Instrument & Components, ATS
Employees	4,000 (1,500 R&D Engineers)

2. 1 Ceyear Profile - Headquarters

Ceyear 🏏

- 1. Old R&D Building
- 2. National Key Lab, Metrology Center
- 3. New Innovation Building
- 4. New Employee Apartment
- 5. Precision Machining Center
- 6. Manufacturing Center
- 7. Hotel and Training Center

Microwave Components, Instruments and Systems R&D and Manufacturing Campus

Qingdao Headquarter

Http://www.ceyear.com

I. Company Profile

2. 2 Ceyear Profile - Bengbu Branch

Bengbu R&D Center

 Ceyear is derived from two professional institutes
 the 40th and 41st institute of CETC.

• Two R&D centers focusing on optical instruments and connectors, switches, cables.

Http://www.ceyear.com

3. Business Range

I. Company Profile

4. Typical Instruments and Solutions

System Integration/ Total Solution

5. Ceyear Certificates and Laboratories

ISO 9001

OHSA 18001 ISO 14001

ISO/IEC 17025 = CNAS-CL01

Внесение в госреестр

Certificates

National Key Laboratory for Science and Technology on Electronic Test & Measurement

National Defense Optical and Electronic Primary

NDM

Beidou Open Laboratory Qingdao Sub Laboratory

Metrology Laboratory

National Quality Supervision & Test Center for **Electronic Instrument**, Connectors and Relays

National-level Labs, R&D centers, regulation commissions and centers are put in Ceyear for operation and administration purpose.

Ι

Company Profile

Noise Figure Test Basics

Ceyear Noise Figure Measurement Solutions

IV Ceyear Competitiveness Analysis

II. Noise Figure Measurement Basics

1 Why do we need Noise Figure?

	$\mathrm{NF} = 10 \log_{10}(F) = 10 \log_{10} \left(rac{\mathrm{SNR_i}}{\mathrm{SNR_o}} ight) = \mathrm{SNR_{i, \ dB}} - \mathrm{SNR_{o, \ dB}}$
--	---

Noise Figure is defined as the **degradation of signal-to-noise ratio** between the input and output. It is a dB value that defines the amount of noise that a device/circuit/system adds to the signal that passes through it. The smaller, the better. It is one of the key specification to quantify the ability to process very weak signals. It's widely used to characterize the features of amplifier, mixer, up/down frequency converter, receiving channel and even an entire receiver system.

2.1 Two FN Measurement Theories

A. Y Factor (Hot-Cold Source)

This method makes use of a calibrated broadband noise source that contains two temperature states: A high temperature state, T(ON source) with a higher output of noise power, and a low temperature state, T(OFF source) with reduced noise output. The noise source is applied to the input of the device under test (DUT)and the noise power at the output of the DUT is measured for each of the two input noise states. The noise figure and gain of the DUT are calculated from these measurements.

This method is suitable for **Spectrum Analyzer** with NF option and dedicated **Noise Figure Analyzer**

2.2 Two FN Measurement Theories

B. Cold Source

The other method is the cold-source or direct-noise method.. E-cal can change the source match around 50 Ω . Using the noise power and vector error model under different impedances, the method can calculate the accurate Noise Figure under 50 Ω .

This method is suitable for Vector Network Analyzer with NF option.

- Provide mismatch correction algorithm
- S-parameters data can reduce noise figure uncertainty
- Requires a tuner and analysis software
- Measurement system can be complex and expensive

2.3 Two NF Method Comparison

Features

- Y-factor method
 - The most common method and most cost-efficient solution
 - When the Noise Source can be connected to the DUT and the ENR is low, this method can provide high and acceptable accuracy
 - The noise source is needed during calibration and measurement process

Cold-source method

- Work with high performance VNA, can provide S parameter, compression and NF at the same time
- Have the highest measurement accuracy.
- Need VNA, E-cal and Noise Source. The most costly solution.
- The noise source is needed during calibration process

Low Noise Ics Amplifier, Transistor, T/R

Mixers and Up/ Down Converter

Signal Receiver Chain

Noise Figure Test Basics

Ceyear Noise Figure Measurement Solutions

IV Ceyear Competitiveness Analysis

Noise Figure Measurement System can automatically measure the NF of linear or quasilinear network. It can perform many functions, such as calibration process, error correction and uncertainty calculation.

Noise Figure Analyzer (Dedicated Instrument) Spectrum Analyzer (with NF option)

Vector Network Analyzer (with NF option)

Together with different kind of **Noise Sources or Electronic-Calibration kits (E-Cal)**. For sub-Teraherts application, frequency extender receiving modules are also needed.

2.1 3986 series Noise Figure Analyzer

The Dedicated NF Measurement Instrument

3986 series NF Analyzer Coaxial 10 MHz~67 GHz, Extendable to 110 GHz

16603 series Standard Noise

ard 16604 series Smart Noise Source

- 10MHz to 67GHz to 110GHz
- Amplifier/ Upconverter/ Downconverter Measurement Mode
- Standard/Smart Noise Source
- Loss Compensation, Uncertainty Calculator, Limitation Functions
- Features very low internal self Noise Figure with standard pre-amplifier

➢ 3986A: 10MHz~4GHz

➢ 3986D: 10MHz~18GHz

➢ 3986F: 10MHz~40GHz

> 3986H: 10MHz~50GHz

3986E: 10MHz~26.5GHz

2.2 3986 series Noise Figure Analyzer

Full Banded series NF Measurement Solution

2.3 3986 series Noise Figure Analyzer

High Sensitivity, Accuracy and Reliability

High Sensitivity

Sensitivity is Better than -165 dBm/Hz from 10MHz to 50GHz. Best Sensitivity can be -170dBm/Hz

To solve NF measurement for ultra-low noise components, circuits and system in new radar/5G applications.

High Accuracy

NF Range: 0 ~ 35dB Measurement Uncertainty: 0.1dB

To solve accurate NF measurement featuring large NF range in transmitter and travelling-wave tube.

High Reliability

Endure input power: +25dBm Endure induced 50Hz/220V or 60Hz/110V AC impulse

Port protective circuits can guarantees a very high reliability to meet the demands from radar and communication systems for high gain IC or device.

2.3 3986 series Noise Figure Analyzer

Multiple Functions, High Stability

Noise Figure Meas			16:33:49 20
Fixed IF Freq: 10.00000	00000GHz	Amplifier SysDwnConv: On SideBan Mode: Variableixed IF: 10.000000GHz	d: LSB Ext LO Ctrl: On Freq Context: RF Fixed IF F
DUT Amplifier	LO Mode Varia	ble Ext LO Ctrl (0n Fixed IF F 10.00000000
SysDwnConv ()n	SideBand LSB	Ext LO Freq Mode Freq Context	7.000 dBm Sweep RF-Input
Cal Diagram	Mea	us Diagram	
Naidis Dzpel		Naski Odor	
		• * *****	
→	+	0	
RF Start 37.0 GH	L0 z Start <u>47.0</u>	I Noise Figur GHz F	e Meas
Stop 42.0 GH	z Stop 52.0	GHz Limit Lin	el [Upper]

- Simple Configuration;
- Easy operation;
- Auto test of multi-stage frequency converting chain;
- Auto uncertainty calculation;

0:39:04 2018

• Gain compensation before or after DUT.

 Noise power spectral density analysis

- Multiple expressions using table or curves
- Built-in uncertainty calculator

NF and Gain changing within 8 hours

Noise Figure drift < 0.1dB

2.4 3986 series Noise Figure Analyzer

Multiple Functions

A. NF and Gain measurement for Linear components and systems

A. Basic Amplifier Mode

For common amplifier NF and Gain measurements.

B. NF and Gain measurement for Amplifier with higher frequency

B. System Down Converter Mode

When the amplifier's frequency is larger than the NF's, an external mixer can be configured to down-convert the frequency. C. NF and Gain measurement for Up/Down Converter and Receiver Front-end Channel

C. Up/down converter measurement

When the DUT is up/down converter, such as mixer, transmitter/ receiver, you can control an external LO through GPIB to make the measurement

2.5 3986 series Noise Figure Analyzer

3986 series NF Analyzer Configuration Selection

Model	Frequency	NF Range	NF Measurement Uncertainty	Ports
20964		0~30dB	±0.05dB	
3900A	1010102 ~ 4002	0 ~ 35dB	±0.10dB	Input: 3.5mm(m)
20260		0~30dB	±0.10dB	Noise Source
3986D 10101HZ ~ 18GHZ	0~35dB	±0.15dB	Standard BNC or	
20965		0~30dB	±0.10dB	Smart Multi-cords
3900E		0~35dB	±0.15dB	
20965		0~30dB	±0.10dB	Input: 2.4mm(m)
39005		0~35dB	±0.15dB	Noise Source
202611		0~30dB	±0.10dB	Standard BNC or
39000	10MHz ~ 50GHz	0~35dB	±0.15dB	Smart Multi-cords

2.6 3986 series Noise Figure Analyzer

16603/4 series Noise Source Selection

Noise Source Model	Frequency	ENR	Output	Types
16603DA	10MHz ~ 18GHz	(5~8) dB		
16603DB	10MHz ~ 18GHz	(14~17) dB	3.5mm(Male)	
16603EB	10MHz ~ 26.5GHz	5GHz (12~17) dB		Standard
16603FB	10MHz ~ 40GHz	(12~19) dB	2.4mm/Mala)	BNC
16603HB	10MHz ~ 50GHz	(10~19) dB	2.4mm(iviale)	
16603LB	10MHz ~ 67GHz	(6~21) dB	1.85mm (male)	
16604DA	10MHz ~ 18GHz	(5~8) dB		
16604DB	10MHz ~ 18GHz	(14~17) dB	3.5mm(Male)	
16604EB	10MHz ~ 26.5GHz	(12~17) dB		Smort
16604FB 10MHz ~ 40GHz		(12~19) dB	2.4mm(Malo)	Sman
16604HB	10MHz ~ 50GHz	(10~19) dB	2.4000000000000000000000000000000000000	
16604LB	10MHz ~ 67GHz	(6~21) dB	1.85mm (male)	

2.7 3986 series Noise Figure Analyzer

NF Measurement Frequency Extension to 110GHz

Ceyear 3986 Series Noise Figure Analyzer

- 10MHz ~ 50GHz Frequency Coverage
- Standard pre-amplifier configuration.
- Amplifier/Upconverter/Downconverter Measurement Mode, Support Standard/Smart Noise Source
- NFA features ultra low inherent noise figure and very low uncertainty.

Ceyear 82411 Series Noise Figure Extender Module

- 50GHz ~ 110 GHz Seamless Coverage
- Low SWR
- High Sensitivity and Performance

To test mm-W amplifier and Up/down Converter's Noise Figure and Gain up to 110GHz.

2.8 3986 series Noise Figure Analyzer

NF Measurement Frequency Extender Modules

Ceyear 82411series Frequency Extender Modules Specifications

Specifications	82411H	82411K	82411L	82411N	82411P
Frequency Range (GHz)	50~63.5	61.5~75	75~88.5	86.5~100	96.5~110
Input SWR	< 1.7:1	< 1.7:1	< 1.8:1	< 1.8:1	< 1.8:1
Inherent NF (dB)	< 16	< 16	< 10	< 10	< 10
IF Output Range (GHz)	4.5~18	4.5~18	4.5~18	4.5~18	4.5~18
Channel Conversion Gain (dB)	> 5	> 5	> 5	> 5	> 5
Image Rejection (dB)	> 30	> 30	> 30	> 30	> 30

* Only support Ceyear 3986 series Noise Figure Analyzer.

2.9 3986 series Noise Figure Analyzer

Typical 110GHz NF Measurement Configuration

System Features:

- Very low inherent instrument noise figure;
- Industry leading sensitivity and accuracy;
- Automatic calculation of measurement uncertainty;
- Three measurement mode with better flexibility.

Ceyear 110GHz Nois	se Figure Analysis	System Configuration
J	0 ,	

	Module and Name	Brand	Unit	Remarks
1	3986 D/E/F/H/L Noise Figure Analyzer	Ceyear	1	Main unit with frequency more than 18GHz
2	82411 series Extender Modules	Ceyear	1 set	Banded Modules to extend up to 110GHz. WR15/WR10
3	NC5115 or NC5110 Noise Source	Noisecom	1	50GHz to 75GHz , WR15; 75GHz to 110GHz, WR10

3.1 NF Option based on Spectrum Analyzer

Ceyear 4051 series Spectrum/Signal Analyzer

3Hz to 4/ 9/ 13.2/ 18/ 26.5/ 40/ 45/ 50/ 67GHz

🔼 YouTube

https://youtu.be/y7gyaG3-v40

- 3Hz to 67GHz, to 750GHz
- Abundant measurement functions
- 550MHz analysis bandwidth
- Powerful spectrum signal analysis ability

3.2 NF Option based on Spectrum Analyzer

Ceyear 4051 series Spectrum/Signal Analyzer

4051 series spectrum/Signal Analyzer (H34: Pre LNA + H48: NF Option)

> . 16603/4 series Noise Source

16603/16604 series noise source

Automatic Import ENR Data

Have the same operation and screen with 3986 series NFA!

3.3 NF Option based on Spectrum Analyzer

Features

- Up to 50GHz NF measurement;
- Comprehensive noise factor measurement functions for gain, Y-factor, effective temperature, etc.
- Up to 50GHz NF measurement;
- Comprehensive noise factor measurement functions for gain, Y-factor, effective temperature, etc.
- With optional internal preamplifier on the SA
- Works with Ceyear 16604 series smart noise sources and 16603 series traditional BNC-powered noise sources
- Measurement uncertainty calculator help you quickly get the uncertainty value

Noise Figure Meas						
		DUT: Amplifier	SysDwnConv: Off			
Mrk1: 6.	000GHz 22.689dB		Mrk3: 15.000GHz 10.841dB			
NFigure 5.000dB/Div Mrk2: 10.	000GHz 17.622dB		Mrk4: 18.000GHz 9.358dB			
36.03						
31.03						
26.02						
21.03	,					
16.03 *	÷					
11.03						
6.031						
1 031						
3.950						
-8,969						
		(10)				
Freq(GHz)	NF	igure(dB) Trc1	Gain(dB)			
6. 0000		22.689	61.459			
6. 5000		21.882	61.582			
7.0000		21.593	62.147			
7.5000		20.877	57.880			
8.0000		20.235	59.526			
8.5000		19.722	58.133			
9.0000		18.940	62.140			
9. 5000		17 622	61 768			
10.0000		11.022	01.100			
Start 6.00000GHz	BW 4.0 MHz	Points	25 Stop 18.00000GHz			
Tcold 304.00K	Avgs Off	Att	/0dB Loss On Corr			

Noise Figure & Gain Test Result

Have the same operation and screen with 3986 series NFA!

4.1 NF Measurement based on VNA

Ceyear 3672 series Vector Network Analyzer

- ➢ Wide Freq. :10 MHz~67GHz, extendable to 750GHz
- Outstanding Dynamic Range and Test Speed
- Highly Integrated & Configurable
- Multiple Functions with many options, Extendable features
- High Repeatability, Reliability & Stability
- Complete test configuration for different Auto Test Systems

Ceyear 3672 VNA (2 or 4 ports)

Select a Measurement Class to change the types of measurements available on this channel

Gain Compression Converters

🗇 IM Spectrum Converters

Swept IMD Converters

Noise Figure Converters

Scalar Mixer/Converter

Vector Mixer/Converter

Converters

the default Measurement Class when turning on a channel

Apply

Available Measurements

Voise Figure Voise Power

-Parameter:

Cancel

Select receiver

Noise Figure Cold Source types-

Measurement Class

Normal

C Standard

IN Spectrum

O Swept IMD

Gain Compression

Noise Figure Cold Source

Create In New Window Create In New Channel

4.2 NF Measurement based on VNA

How to measure NF using a VNA - 1

- Frequency from 10MHz to 50GHz
- Provide Scalar and Vector methods
- Support S parameters, Noise Figures and Noise Parameters measurement in a single connection
- Support different calibration methods

Setup NF Measurement Configuration

Step 1: Select Noise Figure Measurement

requence Power Noise Figure			
Bandwidth/Average Bandwidth 4MHz Average 5 *	Noise Receiver	Receiver Gain C High Medium C Low	-Ambient Temperatur
Impedance States			
Tuner None Selected		Max Acquire	rd 9 States

Step 2: Setup NF Measurement Configuration

4.3 NF Measurement based on VNA

How to measure NF using a VNA - 3

Step 3: Calibration methods selection and setups

on Method Noise	Tuner			Rec Charact	erise
Parameter				 Use Nois 	e Source
neter Only	entation		Detect Type		
. · · · · · · · · · · · · · · · · · · ·	utoOrient Tuner			5	
Tune Tune	er In(SOURCE OUT)	v	0 tuners detected		
Tune	er Out(SOURCE IN)	~	o tuncis actocica		
		,			
tion: Calibration Setup		Power Off	🗖 Silence <ba< th=""><th>ck Next> 1</th><th>Done Cancel</th></ba<>	ck Next> 1	Done Cancel
			an an an an an an	an an an ann anns	
·	File Trace	Channel Stimulus	Response Cal Marker Ar	aalysis System Help	
• • (0)	50.000	2 200 10.000000 0.0000000		1: 4.0000GH	Iz 1. 19dB Noise
H H	40. 000			>3: 8.00000H	2 1.08dB 12 2.93dB 0 S21
E Cal				mont Dooult	
	30. 000 Fy	pical LINA	INF Measure	ement Result	O NF
Cerear 2010	20.000				
由于校群 200	10,000				
1417-26.5GHZ	10.000				3 Noise Power
10Mm	0. 000		<u>A</u>		
	-10 000		-		S-Parameters►
	10.000				Raw Recv
(MP) /	-20.000				Parameters
	-30.000				Noise
					Measure
12	-40. 000				Class
	-50,000				Eavorites
The second second second	1 Chl Start:10	.0000MHz —		St	op:8.00000GHz

Http://www.ceyear.com

Noise 🔘 S-Para O Noise

4.4 NF Measurement based on VNA

How to measure NF using a VNA - 4

Step 4: Connect DUT and Measure

The E-cal and noise source is only needed in calibration process.

NF result comparison using a VNA and NFA

Both methods have a similar result. Cold source method based on VNA can give a more accurate and smooth value.

4.5 NF Measurement based on VNA

Highest measurement efficiency and accuracy to characterize the component comprehensively

- Single connection for S parameters, Noise figure, Noise parameters, Compression and Inter-modulation distortion etc.
- Faster speed: at least 4-Times faster than normal NFA
- Multiple displaying types to express the results.

Low Noise Amplifier IC test

Screenshot of Noise Parameters Measurement using VNA

4.6 NF Measurement based on VNA

Perfect solution for on-wafer Noise Figure and S parameters test simultaneously.

- No need Noise Source or E-cal during measurement process;
- Perfectly work using coaxial, waveguide interfaces;
- Accurate and repeatable on-wafer device test for noise parameters and S parameters

Probe Station

Wafer Under Test

On-wafer one stop full parameters measurement platform Http://www.ceyear.com

5 NF Measurement Method Comparison

Concerns of NF Measurement Methods Selection

	Method	Configuration	Features	Measurable Parameters	Accuracy	Cost
_		3986 NF Analyzer 16603/4 Noise Source	Dedicated Instrument	NF, Gain	high	low
A	Y Factor	4051 Spectrum Analyzer, Preamp and NF option 16603/4 Noise Source	Options on Spectrum Analyzer	NF, Gain	low	medium
	Cold	3672 VNA, NF option 16603 Noise Source	Option on VNA, on- wafer test	NF, Gain, S-parameters	higher	high
В	Source	3672 VNA, NF option 16603 Noise Source 2040X Electronic Calibration Kits	Option on VNA, 0n- wafer test, wider NF test range	NF, Gain, S-parameters	Highest	higher

Ι

Company Profile

Noise Figure Test Basics

Ceyear Noise Figure Measurement Solutions

IV Ceyear Competitiveness Analysis

IV. Ceyear Competitiveness Analysis

1 Ceyear Advantage – Cost-efficient Solution

Self-contained R&D Ability

Full R&D Ability of signal generation, signal reception and analysis in RF, microwave, mmW and THz.

Local Partner and Office

Ceyear has local partner and office in many area and have professional team to provide timely service.

China Domestic Resource

As the largest T&M instrument provider in China, Ceyear has an efficient test ecosystem.

Flexible Business Types

Special pricing and banking policy allow flexible business. Powerful customization and co-R&D facility

IV. Ceyear Competitiveness Analysis

2 Typical Industry Analysis

IC and component Test

Chips or module of LNA, Mixer, up/down converter

Colleges & Universities

Electronic Engineering Material science and engineering Radio Physics

Metrology and Accreditation

National, Industrial stands Factory standards

Space Exploring and Aviation System

Signal receiving modules or chains or modules; Receiver front-end

Radar and Satellite Comm

Signal receiving modules or chains or modules; Receiver front-end.

IV. Ceyear Competitiveness Analysis

3 Typical Cases – University, Institute and Company

	Customer	Methods	Configuration
1	Qingdao RPM Electronics Co., Ltd	3986B Noise Figure Analyzer	Security Radar R&D
2	JEZETEK Group	3986D Noise Figure Analyzer	ICs NF and gain test, Receiving circuits test
3	Xidian University	3986D Noise Figure Analyzer	Ics and modules NF test, circuits test, Teaching and R&D
4	Beihang University (BUAA)	3986E Noise Figure Analyzer	ICs NF and gain test, circuits test, Teaching and R&D
5	Nanjing University of Science & Technology	3986H Noise Figure Analyzer	NF and gain test, circuits test, Teaching and R&D
6	The 55 th , 38 th institute of CETC	3672E Vector Network Analyzer with NF option, 824IIL 88.5GHz extender	ICs measurement, Communication system R&D
7	China National Institute of Metrology	3672E Vector Network Analyzer with NF option	Metrology system R&D and standards constitution
8	China Aerospace Science and Industry Corporation	4051E Spectrum/Signal Analyzer with NF option	Communication system R&D, IC/Module R&D,
9	Institute of Electronics, Chinese Academy of Science	4051H Spectrum/Signal Analyzer with NF option	ICs R&D, communication receiver test
10	Beijing Remote Sensing Technology Institute	3986C Noise Figure Analyzer	Receiver circuits test, system confirmation
11	Shanghai Institute of Microsystem and information Technology	3986E Noise Figure Analyzer with 110GHz extender	Component design and microsystem confirmation
12	China Academy of Space Technology (CAST)	3986F Noise Figure Analyzer with	Space communication receiver R&D
13	IC Valley Microelectronics Co., Ltd	3986A Noise Figure Analyzer	ICs manufacture line
14	HW Technologies CO., Ltd	3986D Noise Figure Analyzer and 4051E Spectrum Analyzer	Communication system R&D, 4G/5G R&D and Manufacture
15	Addvalue Innovation Pte Ltd	3986A Noise Figure Analyzer	Satellite communication device R&D
Http://www.cevear.com			

THANKS !

Focus on Measurement Explore the Future

China Electronics Technology Instruments Co., Ltd

Address: No.98, Xiang Jiang Road, Qingdao (266555), China E-mail: sales@ceyear.com; zhaohao@ceyear.com Tel: +86 532 86896691